Source code for quaccatoo.pulsed_sim.pulsed_sim

# TODO: units in plot_pulses

"""
This module contains the PulsedSim class that is used to define a general pulsed experiment with a sequence of pulses and free evolution operations, part of the QuaCAAToo package.
"""

import matplotlib.pyplot as plt
import numpy as np
import warnings
from qutip import Qobj, mesolve, parallel_map, measurement
from .pulse_shapes import square_pulse
from ..qsys.qsys import QSys

[docs] class PulsedSim: """ The PulsedSim class is used to define a general pulsed experiment with a sequence of pulses and free evolution operations. The class contains methods to add pulses and free evolution operations to the sequence of operations, run the experiment, plot the pulse profiles and results of the experiment. By default the Hamiltonian is in frequency units and the time is in time units. Attributes ---------- system : QSys quantum system object representing the quantum system H2 : list(Qobj, function) time dependent sensing Hamiltonian of the system in the form [Qobj, function] H0_H2 : list list of Hamiltonians for the pulse operation in the form [H0, H2] total_time : float total time of the experiment variable : np.array variable of the experiment which the results depend on variable_name : str name of the variable pulse_profiles :list list of pulse profiles for plotting purposes, where each element is a list [H1, tarray, pulse_shape, pulse_params] results : list results of the experiment to be later generated in the run method sequence : callable parallel sequence of operations to be overwritten in PredefSeqs and PredefDDSeqs, or defined by the user time_steps : int number of time steps for the pulses Methods ------- add_pulse : adds a pulse operation to the sequence of operations of the experiment pulse : updates the total time of the experiment, sets the phase for the pulse and calls mesolve from QuTip to perform the pulse operation add_free_evolution : adds a free evolution operation to the sequence of operations of the experiment _free_evolution : updates the total time of the experiment and applies the time-evolution operator to perform the free evolution operation with the exponential operator run : runs the pulsed experiment by calling the parallel_map function from QuTip over the variable attribute _get_results : gets the results of the experiment from the calculated rho, based on the observable of the system measure_qsys : measures the observable over the system, storing the measurement outcome in the results attribute and collapsing rho in the corresponding eigenstate of the observable plot_pulses : plots the pulse profiles of the experiment by iterating over the pulse_profiles list and plotting each pulse profile and free evolution _check_attr_predef_seqs : checks the common attributes of the PulsedSim object for the predefined sequences and sets them accordingly """ def __init__(self, system, H2=None): """ Initializes a general PulsedSim object with a quantum system, time dependent Hamiltonian and collapse operators. Parameters ---------- system : QSys quantum system object representing the quantum system H2 : Qobj time dependent sensing Hamiltonian of the system """ if not isinstance(system, QSys): raise ValueError("system must be a QSys object") self.system = system if system.rho0 is not None: self.rho = system.rho0.copy() # if collapse operators are given, the H0_H2 attributed needs to be set with H0 for the mesolve function if self.system.c_ops is not None: self.H0_H2 = self.system.H0 if H2 is None: self.H2 = None elif H2[0].shape != self.system.H0.shape or not callable(H2[1]): raise ValueError("H2 must be a list where the first element is a Qobj of the same shape as H0 and the second element is a time dependent function") else: self.H2 = H2 self.H0_H2 = [self.system.H0, self.H2] # initialize the rest of the attributes self.total_time = 0 self.variable = None self.variable_name = None self.pulse_profiles = [] self.results = [] self.sequence = None self.time_steps = None
[docs] def add_pulse(self, duration, H1, pulse_shape=square_pulse, pulse_params=None, time_steps=100, options=None): """ Perform variables checks and adds a pulse operation to the sequence of operations of the experiment for a given duration of the pulse, control Hamiltonian H1, pulse phase, pulse shape function, pulse parameters and time steps by calling the pulse method. Parameters ---------- duration : float or int duration of the pulse H1 : Qobj or list(Qobj) control Hamiltonian of the system pulse_shape : callable or list(callable) pulse shape function or list of pulse shape functions representing the time modulation of t H1 pulse_params : dict dictionary of parameters for the pulse_shape functions time_steps : int number of time steps for the pulses options : dict options for the Qutip solver """ # check all the parameters if options is None: options = {} elif not isinstance(options, dict): raise ValueError("options must be a dictionary of dynamic solver options from Qutip") if not isinstance(time_steps, int) or time_steps <= 0: raise ValueError("time_steps must be a positive integer") else: self.time_steps = time_steps if not isinstance(duration, (int, float)) and duration <= 0: raise ValueError("duration must be a positive real number") if not (callable(pulse_shape) or (isinstance(pulse_shape, list) and all(callable(p) for p in pulse_shape))): raise ValueError("pulse_shape must be a python function or a list of python functions") if pulse_params is None: pulse_params = {} elif not isinstance(pulse_params, dict): raise ValueError('pulse_params must be a dictionary of parameters for the pulse function') # if the user doesn't provide a phi_t, set it to 0 if 'phi_t' not in pulse_params: pulse_params['phi_t'] = 0 # check if H1 is a Qobj or a list of Qobj with the same dimensions as H0 if isinstance(H1, Qobj) and H1.shape == self.system.H0.shape: # append it to the pulse_profiles list self.pulse_profiles.append([H1, np.linspace(self.total_time, self.total_time + duration, self.time_steps), pulse_shape, pulse_params]) if self.H2 is None: Ht = [self.system.H0, [H1, pulse_shape]] else: Ht = [self.system.H0, [H1, pulse_shape], self.H2] elif isinstance(H1, list) and all(isinstance(op, Qobj) and op.shape == self.system.H0.shape for op in H1) and len(H1) == len(pulse_shape): self.pulse_profiles = [[H1[i], np.linspace(self.total_time, self.total_time + duration, self.time_steps), pulse_shape[i], pulse_params] for i in range(len(H1))] if self.H2 is None: Ht = [self.system.H0] + [[H1[i], pulse_shape[i]] for i in range(len(H1))] else: Ht = [self.system.H0] + [[H1[i], pulse_shape[i]] for i in range(len(H1))] + self.H2 else: raise ValueError("H1 must be a Qobj or a list of Qobjs of the same shape as H0 and with the same length as the pulse_shape list") # add the pulse operation to the sequence of operations by calling the pulse method self._pulse(Ht, duration, options, pulse_params)
def _pulse(self, Ht, duration, options, core_pulse_params): """ Calls the mesolve function from QuTip to perform the pulse operation with the given Hamiltonian, time array and options, by updating the rho attribute of the class with the result of the operation. Adds the pulse duration to the total time. This method should be used internally by other methods, as it does not perform any checks on the input parameters for better performance. Parameters ---------- Ht : list list of Hamiltonians for the pulse operation in the form [H0, [H1, pulse_shape]] tarray : np.array time array for the pulse operation options : dict options for the Qutip solver pulse_params : dict dictionary of parameters for the pulse_shape functions """ # perform the pulse operation. The time array is multiplied by 2*pi so that [H*t] has units of radians self.rho = mesolve(Ht, self.rho, 2*np.pi*np.linspace(self.total_time, self.total_time + duration, self.time_steps) , self.system.c_ops, e_ops=[], options = options, args = core_pulse_params).states[-1] self.total_time += duration
[docs] def add_free_evolution(self, duration, options=None): """ Adds a free evolution operation to the sequence of operations of the experiment for a given duration of the free evolution by calling the _free_evolution method. Parameters ---------- duration : float or int duration of the free evolution options : dict options for the Qutip solver """ # check if duration of the pulse is a positive real number if not isinstance(duration, (int, float)) or duration < 0: raise ValueError("duration must be a positive real number") if options is None: options = {} elif not isinstance(options, dict): raise ValueError("options must be a dictionary of dynamic solver options from Qutip") # add the free evolution to the pulse_profiles list self.pulse_profiles.append([None, [self.total_time, duration + self.total_time], None, None]) self._free_evolution(duration, options)
def _free_evolution(self, duration, options): """ Updates the total time of the experiment and applies the time-evolution operator to the initial state. This method should be used internally by other methods, as it does not perform any checks on the input parameters for better performance. If the system has collapse operators or time dependent Hamiltonian H2, mesolve is used to perform the free evolution operation. Otherwise, the time-evolution operator is applied directlyby the exponential operator. Parameters ---------- duration : float or int duration of the free evolution """ if self.system.c_ops is not None or self.H2 is not None: self.rho = mesolve(self.H0_H2, self.rho, 2*np.pi*np.linspace(self.total_time, self.total_time + duration, self.time_steps) , self.system.c_ops, e_ops=[], options=options).states[-1] else: if self.rho.isket: self.rho = (-1j*2*np.pi*self.system.H0*duration).expm() * self.rho else: self.rho = (-1j*2*np.pi*self.system.H0*duration).expm() * self.rho * ((-1j*2*np.pi*self.system.H0*duration).expm()).dag() self.total_time += duration
[docs] def measure_qsys(self, observable=None, tol=None): """ Measures the observable over the system, storing the measurent outcome in the results attribute and collapsing rho in the corresponding eigenstate of the observable. If no observable is given, the observable of the qsys is used. Parameters ---------- observable : Qobj observable to be measured after the sequence of operations tol : float tolerance for the measurement, smallest value for the probabilities Returns ------- results : float or list measurement outcome of the observable, which can be a float or a list of floats if the observable is a list of Qobjs """ if isinstance(observable, Qobj) and observable.shape == self.system.H0.shape: if not observable.isherm: warnings.warn("Passed observable is not hermitian.") self.results, self.rho = measurement.measure_observable(self.rho, observable, tol) elif observable is None and (isinstance(self.system.observable, Qobj) and self.system.observable.shape == self.system.H0.shape): self.results, self.rho = measurement.measure_observable(self.rho, self.system.observable, tol) else: raise ValueError("observable must be a Qobj of the same shape as rho0, H0 and H1.") return self.results.copy()
[docs] def run(self, variable=None, sequence=None, sequence_kwargs=None, map_kw=None): """ Runs the pulsed experiment by calling the parallel_map function from QuTip over the variable attribute. The rho attribute is updated. Parameters ---------- variable : np.array xaxis variable of the plot representing the parameter being changed in the experiment sequence : callable sequence of operations to be performed in the experiment sequence_kwargs : dict dictionary of arguments to be passed to the sequence function map_kw : dict dictionary of options for the parallel_map function from QuTip """ # if no sequence is passed but the PulsedSim has one, uses the attribute sequence if sequence is None and self.sequence is not None: pass # if a sequence is passed, checks if it is a python function and overwrites the attribute elif callable(sequence): self.sequence = sequence else: raise ValueError("sequence must be a python function with a list operations returning a number") # check if a variable was passed by the user, if it is numpy array overwrite the variable attribute if isinstance(variable, np.ndarray): self.variable = variable elif variable is None and len(self.variable) != 0: pass else: raise ValueError("variable must be a numpy array") # check if map_kw and sequence_kwargs are None or dictionaries if map_kw is None: map_kw = {'num_cpus': None} elif not isinstance(map_kw, dict): raise ValueError("map_kw must be a dictionary of options for the parallel_map function from QuTip") if sequence_kwargs is None: sequence_kwargs = {} elif not isinstance(sequence_kwargs, dict): raise ValueError("sequence_args must be a dictionary of arguments to be passed to the sequence function") # the rho attribute needs to be reset to the initial state, so it doesnt run over the previous simulation self.rho = self.system.rho0.copy() # run the experiment by calling the parallel_map function from QuTip over the variable attribute self.rho = parallel_map(self.sequence, self.variable, task_kwargs=sequence_kwargs, map_kw=map_kw) self._get_results()
def _get_results(self): """ Gets the results of the experiment from the calculated rho, based on the observable of the system. The results are stored in the results attribute of the class. """ if self.rho[0].isket: if isinstance(self.system.observable, Qobj): # np.real is used to ensure no imaginary components will be attributed to results self.results = np.array([np.real(rho.dag()*self.system.observable*rho) for rho in self.rho]) elif isinstance(self.system.observable, list): self.results = [np.array([np.real(rho.dag()*observable*rho) for rho in self.rho]) for observable in self.system.observable] else: if isinstance(self.system.observable, Qobj): self.results = np.array([np.real((rho*self.system.observable).tr()) for rho in self.rho]) elif isinstance(self.system.observable, list): self.results = [np.array([np.real((rho*observable).tr()) for rho in self.rho]) for observable in self.system.observable]
[docs] def plot_pulses(self, figsize=(6, 4), xlabel=None, ylabel='Pulse Intensity', title='Pulse Profiles'): """ Plots the pulse profiles of the experiment by iterating over the pulse_profiles list and plotting each pulse profile and free evolution. Parameters ---------- figsize : tuple size of the figure to be passed to matplotlib.pyplot xlabel : str label of the x-axis ylabel : str label of the y-axis title : str title of the plot """ if not (isinstance(figsize, tuple) or len(figsize) == 2): raise ValueError("figsize must be a tuple of two positive floats") if xlabel is None: xlabel = self.variable_name elif not isinstance(xlabel, str): raise ValueError("xlabel must be a string") fig, ax = plt.subplots(1, 1, figsize=figsize) # iterate over all operations in the sequence for itr_pulses in range(len(self.pulse_profiles)): # if the pulse profile is a free evolution, plot a horizontal line at 0 if self.pulse_profiles[itr_pulses][0] is None: ax.plot(self.pulse_profiles[itr_pulses][1], [0, 0], label='Free Evolution', lw=2, alpha=0.7, color='C0') # if the pulse has operators, plot the pulse profiles elif isinstance(self.pulse_profiles[itr_pulses][0], Qobj): ax.plot(self.pulse_profiles[itr_pulses][1], self.pulse_profiles[itr_pulses][2](2*np.pi*self.pulse_profiles[itr_pulses][1], **self.pulse_profiles[itr_pulses][3]), label='H1', lw=2, alpha=0.7, color='C1') elif isinstance(self.pulse_profiles[itr_pulses][0], list): for itr_op in range(len(self.pulse_profiles[itr_pulses])): ax.plot(self.pulse_profiles[itr_pulses][itr_op][1], self.pulse_profiles[itr_pulses][itr_op][2](2*np.pi*self.pulse_profiles[itr_pulses][itr_op][1], **self.pulse_profiles[itr_pulses][itr_op][3]), label=f'H1_{itr_op}', lw=2, alpha=0.7, color=f'C{2+itr_op}') ax.set_xlim(0, self.total_time) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_title(title) # make sure that the legend only shows unique labels. # Adapted from user Julien J in https://stackoverflow.com/questions/19385639/duplicate-items-in-legend-in-matplotlib/40870637#40870637 handles, labels = ax.get_legend_handles_labels() unique_legend = [(h, l) for i, (h, l) in enumerate(zip(handles, labels)) if l not in labels[:i]] ax.legend(*zip(*unique_legend), loc='upper right', bbox_to_anchor=(1.2, 1))
def _check_attr_predef_seqs(self, H1, pulse_shape, pulse_params, options, time_steps, free_duration, pi_pulse_duration, M): """ Checks the commom attributes of the PulsedSim object for the predefined sequences and sets them accordingly. Parameters ---------- H1 : Qobj or list(Qobj) control Hamiltonian of the system pulse_shape : callable or list(callable) pulse shape function or list of pulse shape functions representing the time modulation of H1 pulse_params : dict dictionary of parameters for the pulse_shape functions options : dict options for the Qutip solver time_steps : int number of time steps for the pulses, if applicable free_duration : np.array free evolution times of the sequence, if applicable pi_pulse_duration : float duration of the pi pulse, if applicable M : int order of the sequence, if applicable """ # check whether pulse_shape is a python function or a list of python functions and if it is, assign it to the object if callable(pulse_shape) or (isinstance(pulse_shape, list) and all(callable(pulse_shape) for pulse_shape in pulse_shape)): self.pulse_shape = pulse_shape else: raise ValueError("pulse_shape must be a python function or a list of python functions") # check whether pulse_params is a dictionary and if it is, assign it to the object if pulse_params is None: self.pulse_params = {} elif isinstance(pulse_params, dict): self.pulse_params = pulse_params else: raise ValueError("pulse_params must be a dictionary or a list of dictionaries of parameters for the pulse function") # if phi_t is not in the pulse_params dictionary, assign it as 0 if "phi_t" not in self.pulse_params: self.pulse_params["phi_t"] = 0 # check whether options is a dictionary of solver options from Qutip and if it is, assign it to the object if options is None: self.options = {} elif isinstance(options, dict): self.options = options else: raise ValueError("options must be a dictionary of dynamic solver options from Qutip") # check whether H1 is a Qobj or a list of Qobjs of the same shape as H0 and with the same length as the pulse_shape list and if it is, assign it to the object if isinstance(H1, Qobj) and H1.shape == self.system.H0.shape: self.H1 = H1 if self.H2 is None: self.Ht = [self.system.H0, [H1, pulse_shape]] else: self.Ht = [self.system.H0, [H1, pulse_shape], self.H2] self.H0_H2 = [self.system.H0, self.H2] elif isinstance(H1, list) and all(isinstance(op, Qobj) and op.shape == self.system.H0.shape for op in H1) and len(H1) == len(pulse_shape): self.H1 = H1 if self.H2 is None: self.Ht = [self.system.H0] + [[H1[i], pulse_shape[i]] for i in range(len(H1))] else: self.Ht = [self.system.H0] + [[H1[i], pulse_shape[i]] for i in range(len(H1))] + self.H2 self.H0_H2 = [self.system.H0, self.H2] else: raise ValueError("H1 must be a Qobj or a list of Qobjs of the same shape as H0 with the same length as the pulse_shape list") # check whether time_steps is a positive integer and if it is, assign it to the object if not isinstance(time_steps, int) or time_steps <= 0: raise ValueError("time_steps must be a positive integer") else: self.time_steps = time_steps # check whether free_duration is a numpy array of real and positive elements and if it is, assign it to the object if free_duration is None: pass elif not isinstance(free_duration, (np.ndarray, list)) or not np.all(np.isreal(free_duration)) or not np.all(np.greater_equal(free_duration, 0)): raise ValueError("free_duration must be a numpy array with real positive elements") else: self.variable = free_duration self.variable_name = f"Tau (1/{self.system.units_H0})" # check whether pi_pulse_duration is a positive real number and if it is, assign it to the object if pi_pulse_duration is None: pass elif not isinstance(pi_pulse_duration, (int, float)) or pi_pulse_duration <= 0 or pi_pulse_duration > free_duration[0]: warnings.warn("pulse_duration must be a positive real number and pi_pulse_duration must be smaller than the free evolution time, otherwise pulses will overlap") self.pi_pulse_duration = pi_pulse_duration else: self.pi_pulse_duration = pi_pulse_duration # check whether M is a positive integer and if it is, assign it to the object if M is None: pass elif not isinstance(M, int) or M <= 0: raise ValueError("M must be a positive integer") else: self.M = M